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Overview

Want to rigorously define concepts

But also organize them and make statements about them

Category theory itself allows us to organize concepts

Specific Categories give us a means of making statements

Ontologies are meant to organize and make statements about
concepts

But as ”abstract objects” we lose meaning of the full
definition of a concept

So we we will define an ”Ontological Expansion” to help
define concepts

All in the language of Category Theory



Organizing Concepts: Set Theory

Modern math has given us pretty ubiquitous ways of organizing
ideas:
For example set theory:

To speak of ”elements”



Organizing Concepts: Graph Theory

Modern math has given us pretty ubiquitous ways of organizing
ideas:
For example Graph theory:

To speak of ”elements & relations”



Organizing Concepts: Simplicial Set Theory

Modern math has given us pretty ubiquitous ways of organizing
ideas:
For example Simplicial Set theory:

To speak of ”elements, relations & composition”



Organizing Concepts: Globular Set Theory

Modern math has given us pretty ubiquitous ways of organizing
ideas:
For example Globular Set theory:

To speak of ”elements, relations & higher relations”



Organizing Concepts: Ontological Shape

All of these concepts have one thing in common: They are small
functors into Set

Set: ∗ → Set

Graph: (∆|2)op → set

sSet: ∆op → Set

gSet: G op → Set

(cubical sets, cosimplicial sets, etc.)

Regardless they all show up as contravariant functors ∆op → Set

Definition: Ontological Shape

An ”Ontological Shape” is just a small category ∆



Examples: ∆ ↓ X

For a space X, consider ∆ ↓ X [n] = {∆n → X}
The ”concepts” in this sSet are points

The ”relations” are paths

The compositions are homotopy concatinations
...



Examples: CGHaus

Consider the globular set of compactly generated hausdorff spaces
CGHaus

The ”concepts” in this gSet are spaces

the ”relations” are continuous maps

”higher relations” are homotopies
...



Propositional Category: Set

Each of these models enjoy statements from set theory

We can say ”x is an element of S”
- ”X is a compactly generated hausdorff space”
- ”(1,2) is a point in R2”
- ”γ is a path in R2”

We can say ”A is a subset of S”, hence logical deduction
- ”If X is compact, then it is compactly generated”

We can also use existential, or universal quantifiers
- ”For all x,y in R2, there is a path γ : x  y”



Propositional Category: Other Examples

Of course other categories give us other statements:

ModK ”N is a submodule of M”

Reimann ”γ : x  y is a geodesic”

ChK ”x is the boundary of y”

Or we may ask for a 2-category

Cat ”
∏

x F (x) is universal”

Ab ”A→ B → C is exact”

Definition: Propositional Category

A ”Propositional Category” C is just a category



Basic Ontology

The Ontological shape ∆ organizes our concepts
The Propositional Category C allows us to make statements

Definition : Basic (∆,C)-Ontology

A Basic (∆,C)-Ontology is a functor Σ : ∆op → C

When ∆ and C are clear, we will just say ”basic ontology”

When Σ : ∆op → C has a name (such as ”simplicial set”) we
will stick to that name



Rigorous Definition of Objects

Using Basic Ontologies we can:

Organize concepts via ∆

Make Statements about them in C

But a good notion of ontology should also include how to define
it’s objects unambiguously.
We will detail this issue with an example.



Rigorous Definition of Objects: Example Top

Consider the simplicial set of topological spaces:
That is, the nerve N(Top) (bounded above by an cardinal)

Objects are spaces X

n-Simplecies are compositions of maps

If I say ”Consider R2”, you may know what I mean...
but what if I am lying to you?
That is, what if I really mean D2, or ΩS42?



Rigorous Definition of Objects: Example Top

In Top, I have a way of dealing with this ambiguity:
Namely, check the isomorphism class of what I labeled ”R2”

but this isn’t always available, what if I give you the simplicial set:

{R2 4x→ R2}

In this simplicial set, I can no longer consider isomorphism classes.
However, it seems I have embedded this simplicial set into Top
so in Top there I can check R2’s isomorphism class
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Rigorous Defintion of Objects

This is great, assuming we have this embedding

{R2 4x→ R2} ↪→ Top

but in other cases we might not:

{France
is in→ EU}

Instead of isomorphism class, we define concepts by their internals



Ontological Expansion: Example R2

For example, the topological space R2 is not defined by it’s label
but rather:

Its Points

Its Open Sets

These will reveal themselves as two Ontological Expansions



Ontological Expansion: Example R2



Submorphism

In the example above, we expanded R2 in two different ways:

into a ”collection” of points

and a ”collection” of open sets

We’ve expanded the objects (of Top), but now we want to expand
the simplecies
We will do this by definining an n-submorphism



Submorphism

Intuitively, an n-submorphism is a collection of k-simplecies, k ≥ n,
closed under relevant face maps.

0-submorphism is just a sub-simplicial set

Here is a picture of a 1-submorphism:
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Submorphism Definition

Formally, we can consider the full subcategory Jn : ∆|n ↪→ ∆
whose objects are ob(∆|n) = {[k]|k ≥ n}

Then we can pull back a simplicial set by the inclusion

J∗n(Σ) = Σ ◦ Jopn : ∆|opn → Set

and then consider natural transformations into it

∆|opn

∆op

Set

Jopn

In

Σ

σn
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Submorphism Definition

Definition: n-submorphism

An n-submorphism of a simplicial set Σ is a natural transformation

σn : In → J∗n(Σ)

∆|opn

∆op

Set

Jopn

In

Σ

σn

Again, intuitively, one can think of a submorphism as a collection
of subset σn = {Sk ⊆ Σ[k]}k≥n
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Definition: n-submorphism
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Submorphism Faces

n-submorphisms can have faces much like simplecies.

if σn = {Sk}k≥n, consider the set of n-simplecies:

n∗(σn) = Sn

Informally, σn−1 is an i-face of σn if:

∀s ∈ n∗(σn), fi (s) ∈ (n − 1)∗(σn−1)

In this way, the submorphisms behave like a simplical set

Definition: sm(Σ)

Let Σ be a simplicial set, then sm(Σ) are the submorphisms in Σ

(In reality it is a functor sm(Σ) : ∆op → SetP)
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Ontological Expansion: Definition

We are now ready for a definition of an ontological expansion:

Definition: Ontological Expansion (of a simplicial sets)

Let Σ,Σ′ : ∆op → Set simplicial sets, An ontological expansion is
a natural transformation

O : Σ→ sm(Σ′)



Ontological Expansion: Intuition

for an ontological expansion O : Σ→ sm(Σ′):

For every 0-simplex, we expand to a sub-simplicial set

For every 1-simplex, we expand to a 1-submorphism

The faces of this 1-simplex expand to faces of the
1-submorphism
...

A→ B



Ontological Expansion: Example R2



Ontological Expansion: Example U : Top→ sm(Set)

Consider the simplicial sets Top and Set
We will define the ontological expansion U : Top→ sm(Set):

U(X ) = {∗x}
U(f ) = {∗x → ∗f (x)}
U(g ◦ f = h) = {∗x → ∗f (x) → ∗g(f (x)) = ∗x → ∗h(x)}
...

This is an ontological expansion:

U(X),U(Y) are faces of U(f)

U(f),U(g), U(h) are faces of U(g ◦ f = h)



Ontological Expansion:Example U : Top→ sm(Top)

Consider the simplicial set Top
We will define the ontological expansion U : Top→ sm(Top):

O(X ) = {U ⊆ X open}
O(f ) = {f |U : U → V : V ⊇ f (U)}
O(g ◦ f = h) =

{ g |V ◦ f |U = h|U : U →W : V ⊇ f (U), W ⊇ g(f (U)) }

O(X),O(Y) are faces of O(f), etc...



Summary

We are looking for a notion of ontology that:

Allows us to organize concepts

Allows us to make statements about concepts

Allows us to define concepts formally

This is achieved by:

Ontological Shape ∆

Propositional Category C

Ontological Expansions O : Σ→ sm(Σ′)



Definition: Ontology

So our proposed defintion of ontology is:

Definition*: Ontology

An Ontology is a basic (∆,C)-Ontology Σ, with a collection of
Ontological Expansions

{Oi : Σ→ sm(Ti )}

(If this reminds you of a site, this is a good thing. A (small) site is
an ontology whose expansions are collections of coverings)


